Analytical models

Shear strength

Al-Ta'an, S. A.; Al-Feel, J. R. (1990)
Mosul University
Mosul, Iraq
Evaluation of shear strength of fibre-reinforced concrete beams

  • \( K = 1.3 \): crimped or duoform
  • \( K = 1.2 \): hooked-end
  • \( K = 1.0 \): plain

\( {a \over d} \gt 2.5 \):

\( e = 1.0 \)

\( {a \over d} \le 2.5 \):

\( e = 2.5 . {d \over a} \)

Proposed equation:

\(v_u = { 1.6 . \sqrt{f_{c}} + 960 . \rho_{L} . {d \over a} . e + 8.5 . K . V_{f} . {L_{f} \over D_{f}} \over 9} \)


Narayanan, R.; Darwish, I. Y. S. (1987)
University of Wales College
Cardiff, Wales
Use of steel fibers as shear reinforcement

  • \( d_{f} = 0.5 \): rounded
  • \( d_{f} = 0.75 \): crimped
  • \( d_{f} = 1.0 \): indented

\( F = {L_{f} \over D_{f}} . V_{f} . d_{f} \)

\(f_{spfc} = {f_{cuf} \over 20-\sqrt{F}} + 0.7 + \sqrt{F} \)

\( {a \over d} \gt 2.8 \):

\( e = 1.0 \)

\( {a \over d} \le 2.8 \):

\( e = 2.8 . {d \over a} \)

Proposed equation:

\(v_b = 0.41 . \tau . F \)

\(v_u = e . (0.24 . f_{spfc} + 80 . \rho . {d \over a}) + v_{b} \)


Sharma, A. K. (1986)
The University of the West Indies
St. Augustine, Trinidad and Tobago
Shear strength of steel fiber reinforced concrete beams

  • \( k = 1 \): direct tension
  • \( k = 2/3 \): indirect tension
  • \( k = 4/9 \): flexural tension

\( f_{ct} = 0.79 . \sqrt{f_{c}} \)

Proposed equation:

\(v_u = k . f_{ct} . {d \over a}^{0.25} \)


Bazant, Z. P.; Kim, J. K. (1984)
Northwestern University
Illinois, United States
Size Effect in Shear Failure of Longitudinally Reinforced Beams

\(\xi = { 1 \over \sqrt{ 1 + {d \over 25.d_a} } } \)

Proposed equation:

\(v_u = 0.6643 . \xi . \rho_{l}^{1/3} . [\sqrt{f_c} + 249.104 . \sqrt{ \rho_{l} \over (a/d)^5 }] \)


Zsutty, T. (1971)
San Jose State College
California, United States
Shear Strength Prediction for Separate Categories of Simple Beam Tests

Proposed equation:

\( {a \over d} \ge 2.5 \):

\(v_u = 60 . (f_{c} . \rho_{l} . {1 \over a/d} )^{1/3} \)

\( {a \over d} \lt 2.5 \):

\(v_u = 60 . (f_{c} . \rho_{l} . {1 \over a/d} )^{1/3} . ({2.5 \over a/d}) \)


Explore other models

Make predictions